Critical solutions of nonlinear equations: stability issues

نویسندگان

  • Alexey F. Izmailov
  • Alexey S. Kurennoy
  • Mikhail V. Solodov
چکیده

It is known that when the set of Lagrange multipliers associated with a stationary point of a constrained optimization problem is not a singleton, this set may contain so-called critical multipliers. This special subset of Lagrange multipliers defines, to a great extent, stability pattern of the solution in question subject to parametric perturbations. Criticality of a Lagrange multiplier can be equivalently characterized by the absence of the local Lipschitzian error bound in terms of the natural residual of the optimality system. In this work, taking the view of criticality as that associated to the error bound, we extend the concept to general nonlinear equations (not necessarily with primal-dual optimality structure). Among other things, we show that while singular noncritical solutions of nonlinear equations can be expected to be stable only subject to some poor “asymptotically thin” classes of perturbations, critical solutions can be stable under rich classes of perturbations. This fact is quite remarkable, considering that in the case of nonisolated solutions, critical solutions usually form a thin subset within all the solutions. We also note that the results for general equations lead to some new insights into the properties of critical Lagrange multipliers (i.e., solutions of equations with primal-dual structure).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution and stability analysis of coupled nonlinear Schrodinger equations

We consider a new type of integrable coupled nonlinear Schrodinger (CNLS)equations proposed by our self [submitted to Phys. Plasmas (2011)]. The explicitform of soliton solutions are derived using the Hirota's bilinear method.We show that the parameters in the CNLS equations only determine the regionsfor the existence of bright and dark soliton solutions. Finally, throughthe linear stability an...

متن کامل

Stochastic differential inclusions of semimonotone type in Hilbert spaces

In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...

متن کامل

Ulam stabilities for nonlinear Volterra-Fredholm delay integrodifferential equations

In the present research paper we derive results about existence and uniqueness of solutions and Ulam--Hyers and Rassias stabilities of nonlinear Volterra--Fredholm delay integrodifferential equations. Pachpatte's inequality and Picard operator theory are the main tools that are used to obtain our main results. We concluded this work with applications of ob...

متن کامل

A Solution of Riccati Nonlinear Differential Equation using Enhanced Homotopy Perturbation Method (EHPM)

Homotopy Perturbation Method is an effective method to find a solution of a nonlinear differential equation, subjected to a set of boundary condition. In this method a nonlinear and complex differential equation is transformed to series of linear and nonlinear and almost simpler differential equations. These set of equations are then solved secularly. Finally a linear combination of the solutio...

متن کامل

Nonlinear Buckling of Circular Nano Plates on Elastic Foundation

The following article investigates nonlinear symmetric buckling of moderately thick circular Nano plates with an orthotropic property under uniform radial compressive in-plane mechanical load. Taking into account Eringen nonlocal elasticity theory, principle of virtual work, first order shear deformation plate theory (FSDT) and nonlinear Von-Karman strains, the governing equations are obtained ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 168  شماره 

صفحات  -

تاریخ انتشار 2018